Air-Breathing battery development increases storage capacity with greater longevity at a fraction of the cost of other batteries.

 

A team of researchers from MIT have developed an air-breathing battery capable of storing electricity with greater longevity and at a fraction of the cost of other energy sources. The development solves intermittency issues that often keep power sources from connecting to the grid.

Yet-Ming Chiang, Kyocera Professor of Materials Science and Engineering at MIT stated that the battery “inhales and exhales” oxygen, which balances the charge. “Breathing” in the oxygen causes the anode to discharge electrons to an external circuit, while releasing that oxygen recharges the battery by returning electrons to the anode.

The overall cost of the battery is 1/30th of the cost of lithium-ion batteries. At this rate, a larger system utilizing these batteries could store solar and wind power for approximately $20-30 per kilowatt hour, while competing batteries offer the energy density needed but cost upwards of $100 per kilowatt hour.

Chiang stated, “This meant maybe we weren’t focusing on the right thing, with an ever-increasing chemical cost in pursuit of high energy density. We said, ‘If we want energy storage at the terawatt scale, we have to use truly abundant materials.’” This pursuit led them to sulfur, which is easily accessible. The next step was locating a stable but inexpensive liquid for the cathode.

 

Researchers experimented with potassium permanganate, knowing that utilizing it as a cathode material, the reaction would discharge electricity. However, the process is typically impossible, so positive results were not anticipated. Continuing with the experiment, research author Zheng Li, a postdoc at MIT at the time, stumbled upon a discovery. While the reaction was not reversible, an oxygen reaction in the cathode caused the battery to recharge.

Describing the moment, Chiang remarked on his surprise at Li’s discovery. “I said, ‘Wait, you figured out a rechargeable chemistry using sulfur that does not require a cathode compound?’ That was the ah-ha moment.”

Chiang also stated that systems utilizing such batteries stand to compete with pumped hydroelectric storage systems. These systems provide much of the energy throughout the world. “The energy density of a flow battery like this is more than 500 times higher than pumped hydroelectric storage. It’s also so much more compact so that you can imagine putting it anywhere you have renewable generation.”

Did you miss this?

Other Popular Stories

  • Space X's Falcon Heavy could explode with the force of a nuclear weapon; over 1400 airline flights delayed by space launches in 2018
  • Pipelines safer than rail or truck for oil: report
  • Manufacturing grew in August; oil industry to lose $2.1 billion in 2015
  • USC Students Blast Rocket Speed and Height Records
  • Ontario's food producers missing local growth opportunities: study
  • Ontario's FIT program ruled illegal by World Trade Organization
  • Robots, 3D printing to revolutionize building industry unchanged for 5000 years
  • FirstEnergy of Calgary to host ninth London Global Energy Conference
  • Youth trainee program seeks to address skilled labour shortage
  • Drop in manufacturing pushes industrial capacity use down in Q4 2012
  • Canadian cleantech sector strong in research, innovation, but weak in commercialization
  • Helicopter flight simulator to train offshore rig pilots in Newfoundland
  • Oil supply rising even as demand growth falls; investment likely to be slashed further in 2017
  • Infrastructure in focus at Queen's Park as new legislation tabled
  • Netherlands company to test plastic road construction
  • Industry mostly positive about government's infrastructure spending plans
  • Southwest Requested More Time for Inspections, Second Engine Explosion Results in Tragedy
  • IBM reveals super-efficient solar power system prototype
  • TransCanada will use railroads if Keystone pipeline not approved
  • Volvo to Expand Production of XC40 SUV in Europe and China
Scroll to Top