Entire airframe of this V-shaped flying wing houses passengers and cargo resulting in 20 percent fuel savings

This fall, a prototype of a new concept, in passenger or cargo jets may lead to substantial fuel savings — expected to be at least 20 percent, and emissions by up to 35 percent.

Developed conceptually by student Justus Benad, the entire body fuselage is a flying wing, pushing passengers into the wings for ultimate aerodynamic efficiency.

Engineered Design Insider Flying wingOil Gas Automotive Aerospace Industry Magazine
KLM’s flying wing concept based on student Justus Benad idea and further developed by Delft Technical University.

 

In the past, flying wing designs have supported large payloads at high altitudes, notably in the military craft. Here, the concept of Justus Benand of Berlin’s Technical University is to create the most efficient shape and lightest relative weight ratio.

 

Engineered Design Insider Flying Wing from aboveOil Gas Automotive Aerospace Industry Magazine
The engines move topside. There is a notable absence of a vertical stabilizer on the main body, now moved to the tips of wings.

 

Moving to prototype possibly this fall (2019) — as developed further by Delft Technical University in the Netherlands, working with KLM’s Dutch airline — the flying V design is substantially lighter than normal airframes with wings. Typically, modern jets only use the wings for engines and fuel tanks.

With the flying wing, passengers, fuel and cargo will all be integral to the “wing” fuselage, with the twin engines moving to the rear of the V-Wing and a notable absence of traditional vertical stabilizer in the centre — moved, in this design, to the tips of each wing.

On aircraft, vertical stabilizers almost always point upwards. For this reason these are also known as the vertical tail, and are part of an aircraft’s empennage. With the flying wing, a “tail” may no longer be appropriate. The upright mounting positions has two major benefits with drag of the stabilizer increasing at speed — which can create a nose-up moment that helps to prevent dangerous overspeed; and, sccondly, for banking (turning), the stabilizer produces lift which counters the banking moment. This area of the new design, with twin vertical stabilizers on the tips of each wing, will require extensive testing.

 

Engineered Design Insider Flying wing from the frontOil Gas Automotive Aerospace Industry Magazine
The vertical stabilizers move to the ends of each wing tip.

 

In design and wind tunnel tests, the design is near-optimal, with a projected efficiency gain of 20 percent over today’s most advanced A350 design.

Overall, the flying wing has less “resistance” resulting in less fuel to propel the relative weight. Although the design is efficient, the main issue to be tested in the prototype is stability at various speeds.

Depending on tests, working models of the “flying wing” may not make production for many years.

 

Engineered Design Insider V shaped Flying Wing fuel efficientOil Gas Automotive Aerospace Industry Magazine
All images KLM.

 

Did you miss this?

Other Popular Stories

  • Skilled labour shortage in world oil industry: report
  • Ontario on track to lead country in employment, economic growth
  • China’s Drive for Clean Energy Results in Winter Gas Shortage
  • BC sees 100,000 LNG jobs, $1 trillion in revenues
  • Solar Challenge 3,000 kilometer "race" tests solar capabilities and technologies
  • Talk of recovery in Canada's oilpatch as Encana posts better than expected earnings
  • Financial risks associated with emissions limits for Canada for oil and gas industries
  • Ethical Concerns Rise Over the Future of Autonomous Vehicles
  • Bombardier to build 170 high-speed rail cars for Siemens
  • SpaceX’s Falcon 9 Ripped Hole in Ionosphere During 2017 Launch
  • NASA says human Mars landing is feasible by 2030s
  • Ontario and Saskatchewan criticizes the Federal Canadian Minerals and Metals Plan in a joint official statement
  • Union workers safer in construction trades: study
  • New MRO operation rising in former Aveos plant
  • Toronto company seeking to market energy storage system
  • Handheld device detects bacteria on food in real time
  • Drone use by business set to explode, worth $127B by 2020: PwC
  • Contractors, steel workers unions support Northern Gateway pipeline
  • Canada-France space agencies test stratosphere balloon in Ontario
  • Auto Industry Expected to Meet 2025 Standards
Scroll to Top