The advantages of laser welding: automation, quality, no tool wear

The first use of laser cutting dates back to 1967, when a project lead by Dr Peter Houldcroft used oxygen assisted gas with a concentrated CO2 beam. This also led to the emergence of laser welding, with the same basic principles, but with the laser only melting the metal, rather than cutting all the way through. In short, the laser welding process uses a concentrated beam of light on one spot of a chosen material to break bonds between atoms and cause melting. The most common materials that people weld are metal and plastic, and when two materials are welded at their seams, they can fuse into a solid joint.

The laser beam itself is created via the use of optical fibres, from single-fibre machines to multiple-fibre machines. The more fibres used, the stronger the laser. A collimator lens and focusing lens are used to then concentrate the beam to the point where it leaves the machine.

 

Engineered Design Insider Laser weldingOil Gas Automotive Aerospace Industry Magazine

 

Gas is also used in the welding process to prevent the welded surface from making contact with the atmosphere. A separate nozzle is positioned next to the laser to emit a gas, usually CO2, down onto the target in a process called Cutting Gas. In a normal atmosphere, laser welding without the use of cutting gas can have some pretty bad side effects. Holes can form within the weld due to the levels of nitrogen in the air, leading to weld failures. Humidity in the air can also diffuse hydrogen into the target material, resulting in a weak weld or failing result.

Advantages of using lasers to weld

  • High-quality
  • Laser welding can concentrate on a very specific target
  • No tool wear
  • No use of electrodes
  • The process can be automated easily
  • Effective

Types of lasers used in welding

  • Gas lasers
  • Solid-state lasers
  • Fiber lasers

The main types of weld joints achieved with lasers

  • Overlap weld
  • Edge flange weld
  • Butt weld
  • Filler lap weld

Types of laser welding

Heat conduction welding – The metal is heated just above melting point to produce a smooth and aesthetic weld. This is used with a power laser under 500W when high weld strength is not needed.
Keyhole welding – Heats the metal up until the contact surfaces vaporizes. This digging in creates a keyhole. Temperatures rise above 10,000K. A laser with power above 105W/mm2 is needed for this.

Did you miss this?

Other Popular Stories

  • Canada's energy sector "at a crossroads," risks falling behind
  • Rapid growth of solar power a challenge for utilities
  • Robot from Oil & Gas Technology Centre may improve safety, enhance productivity and reduce costs for offshore oil and gas projects
  • SpaceX-1 Launches Falcon 9
  • Bombardier Competitor Comes to Toronto
  • Breakthrough wearable Virtual Reality body suits and gloves allow you to feel objects in virtual Reality — Applications in industry, medicine, safety
  • $3.4 Million Invested in Hypercar with Sharper, Faster Turns
  • Magellan gets $110 million contract for Canadian satellite program
  • Jobs that are at risk of automation — and jobs that are not
  • Ontario invests $488,250 to create new jobs in Subdbury and expand research in mining.
  • FCA 2020 in Canada: Chrysler 300 to be eliminated; Pacifica to be refreshed; new electric minivan “Portal” to go into production
  • Luxury car sales at record levels in Canada
  • Volkswagen hit with $14.7 billion in fines, compensation over emissions scandal
  • Slower growth, need for new markets challenge Canada's oil producers
  • China Opens Solar Highway, Closes in Under a Week
  • Zinc-air battery shows great promise in search for energy storage
  • GM/Honda latest partners in search for affordable fuel cell car
  • Technology that could help save the earth: Carbon Capture and Storage
  • GE Aviation opens new robotics facility in Quebec
  • Fiat Chrysler denies wrongdoing as EPA accuses it of emissions cheating
Scroll to Top