Colossal Fusion Project Set to Transform the Energy Industry

fusion 4

 

Several nations are working together to transform the energy industry through fusion, “the nuclear reaction that powers the sun and the stars.” The project’s members include the United States, Russia, China, India, and the European Union. The project centers entirely around fusion as a “potential source of safe, non-carbon emitting and limitless energy.”

Fusion involves two nuclei of atoms; and multiple possible combinations for fusion exist, though current technology is only capable of accessing the fusion of two hydrogen isotopes, deuterium and tritium. Physicists at Tel Aviv University and the University of Chicago discovered “evidence suggesting that fusion could occur between quarks, an elementary particle that is a constituent of the nucleus,” according to the ITER website. “Quark fusion, they calculate, could generate approximately eight times more energy than the energy released during DT fusion.”

The International Thermonuclear Experimental Reactor (ITER) is a “complex science project” designed to prove that fusion power is sustainable and that it can be generated on a commercial scale. It has been described as “the key experimental step between today’s fusion research machines and tomorrow’s fusion power plants.” A recent press release describes the project and its benefits:

  • Fusion energy is carbon-free, environmentally sustainable, and far more powerful than fossil fuels.
  • ITER uses two forms of hydrogen fuel: deuterium (D), which easily extracted from seawater, and tritium (T), which is bred from lithium inside the fusion reactor. The supply of fusion fuel is enough to last millions of years.
  • When the fusion reaction is disrupted, the reactor shuts down safely and without external assistance; and the small amounts of fuel that are used eliminate the possibility of an accident caused by a meltdown.
  • Building and operating a fusion power plant is targeted to be comparable to the cost of a fossil fuel or nuclear fission plant without the costs and risks associated with high-level radioactive waste disposal or the release of CO2 and other pollutants.

 

fusion 3

 

ITER utilizes hydrogen fusion to generate heat, which will be used in commercial facilities to drive turbines and produce electricity. Fusion power “offers the prospect of an almost inexhaustible source of energy for future generations, according to the World Nuclear Association.

ITER is an experimental device and therefore will not convert generated heat into electricity; instead, it will circulate pressurized cooling water through the installation to reduce the heat load. The infrastructure of the heat rejection system is concentrated in a 6,000-square-metre area, and the cooling tower cold basin is divided into five separate compartments, where water flows out to the pumps.

 

fusion 1

 

ITER utilizes hydrogen fusion to generate heat, which will be used in commercial facilities to drive turbines and produce electricity. Fusion power “offers the prospect of an almost inexhaustible source of energy for future generations, according to the World Nuclear Association.

ITER is an experimental device and therefore will not convert generated heat into electricity; instead, it will circulate pressurized cooling water through the installation to reduce the heat load. The infrastructure of the heat rejection system is concentrated in a 6,000-square-metre area, and the cooling tower cold basin is divided into five separate compartments, where water flows out to the pumps.

 

 

fusion 2

 

The project recently marked a major milestone with 50 per cent of the “total construction work scope through First Plasma” was completed, which, according to a statement by Director-General Bernard Bigot, reflects “the collective contribution and commitment of ITER’s seven members.”

“The stakes are very high for ITER,” said Bigot. “When we prove that fusion is a viable energy source, it will eventually replace burning fossil fuels, which are non-renewable and non-sustainable. Fusion will be complementary with wind, solar, and other renewable energies.” He also stressed the importance of all members in maintaining the project, as it is built in an integrated way, which makes success interdependent.

 


 

Sources:

https://www.iter.org/

https://www.iter.org/news/pressreleases

https://www.iter.org/doc/www/content/com/Lists/list_items/Attachments/759/2017_12_Fifty_Percent.pdf

https://www.iter.org/newsline/-/2877

https://static.iter.org/com/360/2017-04/index.html

 

 

Did you miss this?

Other Popular Stories

  • Canadian work in composite materials honoured with innovation awards
  • Canada-France space agencies test stratosphere balloon in Ontario
  • Pump and compressor makers feeling the oil crunch
  • Oilsands companies hope to innovate cleaner, more profitable future
  • Federal money continues to flow to clean technology innovators
  • Airborne wind turbine will rise to new heights
  • Acquisition of SABMiller makes Molson Coors third-largest brewer in the world
  • British cheer awarding of train contract to Bombardier
  • GM/Honda latest partners in search for affordable fuel cell car
  • Canada's economy grew in Q4, manufacturing up in December
  • Pratt & Whitney Canada to invest $275 million in Quebec plant
  • Canadian cleantech sector strong in research, innovation, but weak in commercialization
  • Canada's auto industry on cusp of rebuilding in NAFTA, but no thanks to CETA: Unifor
  • Daimler Records Big Profits and 2018 Plans
  • Ontario to improve business "climate" for automotive industry; special focus on autonomous vehicle development
  • Airline debacle highlights need for businesses to be tech smart
  • Jobs that are at risk of automation — and jobs that are not
  • Auto industry back on top as Canada's biggest exporter: report
  • Oil producers agree to cut output to boost prices as global supply remains higher than demand
  • TransCanada will use railroads if Keystone pipeline not approved
Scroll to Top